Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
iScience ; 27(4): 109495, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550978

RESUMO

Antigen-specific antibody infusion is known to enhance or suppress germinal center (GC) responses depending on the affinity of the infusion. We hypothesized that infusing monoclonal antibodies (mAbs) of escalating affinity during an immunization regimen may progressively escalate selection pressure on competing B cells, increasing their affinity. To test this, we immunized mice with HIV envelope gp120 and infused CD4 binding-site (CD4bs)-specific mAbs. While mAb infusion reduced somatic hypermutation (SHM) and affinity in most CD4bs-specific B cells, a sub-population was identified with greater SHM and affinity than control. High-throughput sequencing of plasma cells revealed that CD4bs-specific plasma cells possessed elevated SHM after mAb infusion, with phylogenetic tree topology that suggested more rapid differentiation. We therefore conclude, in accordance with other studies, that high-affinity mAb infusion primarily suppresses recruitment of most competing B cells but can increase and expedite affinity maturation of certain epitope-specific B cells.

2.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370662

RESUMO

Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.

3.
iScience ; 26(1): 105862, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590902

RESUMO

We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.

4.
bioRxiv ; 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36380764

RESUMO

People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual immune dysfunction and often display poorer responses to vaccination. We assessed in a cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints. Moreover, their neutralization breadth was reduced with fewer individuals developing a neutralizing response against the Omicron variant (BA.1) relative to controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs) and pronounced B cell dysfunction. Improved neutralization breadth was seen after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global, but not spike-specific, MBC dysfunction. In contrast to the inferior antibody responses, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, a subset of PLWH with low or absent neutralization had detectable functional T cell responses. These individuals had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3 + CD127 + CD8 + T cells after two doses of SARS-CoV-2 vaccination, which may compensate for sub-optimal serological responses in the event of infection. Therefore, normalisation of B cell homeostasis could improve serological responses to vaccines in PLWH and evaluating T cell immunity could provide a more comprehensive immune status profile in these individuals and others with B cell imbalances.

5.
EMBO Rep ; 23(10): e54322, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35999696

RESUMO

The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34843448

RESUMO

Memory B cells (MBCs) can provide a recall response able to supplement waning antibodies (Abs) with an affinity-matured response better able to neutralize variant viruses. We studied a cohort of elderly care home residents and younger staff (median age of 87 years and 56 years, respectively), who had survived COVID-19 outbreaks with only mild or asymptomatic infection. The cohort was selected because of its high proportion of individuals who had lost neutralizing antibodies (nAbs), thus allowing us to specifically investigate the reserve immunity from SARS-CoV-2-specific MBCs in this setting. Class-switched spike and receptor-binding domain (RBD) tetramer-binding MBCs persisted 5 months after mild or asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike- and RBD-specific MBCs had a classical phenotype, but we found that activated MBCs, indicating possible ongoing antigenic stimulation or inflammation, were expanded in the elderly group. Spike- and RBD-specific MBCs remained detectable in the majority of individuals who had lost nAbs, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike-, S1 subunit of the spike protein- (S1-), and RBD-specific recall was also detectable by enzyme-linked immune absorbent spot (ELISPOT) assay in some individuals who had lost nAbs, but was significantly impaired in the elderly. Our findings demonstrate that a reserve of SARS-CoV-2-specific MBCs persists beyond the loss of nAbs but highlight the need for careful monitoring of functional defects in spike- and RBD-specific B cell immunity in the elderly.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Memória Imunológica , Células B de Memória/imunologia , SARS-CoV-2/imunologia , COVID-19/epidemiologia , Feminino , Humanos , Switching de Imunoglobulina , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Nat Commun ; 12(1): 5839, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611163

RESUMO

There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). Here we show that the majority of PLWH with ART suppressed HIV viral load, mount a detectable adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleoprotein are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , Imunidade Humoral , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Coortes , Feminino , Genoma Humano , Infecções por HIV/sangue , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Especificidade da Espécie , Doadores de Tecidos
8.
Lancet HIV ; 8(6): e317-e318, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087093
9.
Kidney Int Rep ; 6(7): 1799-1809, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33942026

RESUMO

INTRODUCTION: Patients with end-stage kidney disease (ESKD) represent a vulnerable group with multiple risk factors that are associated with poor outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite established susceptibility to infectious complications and the importance of humoral immunity in protection against SARS-CoV-2, few studies have investigated the humoral immune response to SARS-CoV-2 within this population. Here, we evaluate the seroprevalence of SARS-CoV-2 in patients awaiting renal transplantation and determine whether seroconverted patients with ESKD have durable and functional neutralizing activity against SARS-CoV-2. METHODS: Serum samples were obtained from 164 patients with ESKD by August 2020. Humoral immune responses were evaluated by SARS-CoV-2 spike S1 subunit and nucleoprotein semiquantitative enzyme-linked immunosorbent assay (ELISA) and SARS-CoV-2 spike pseudotype neutralization assay. RESULTS: All patients with ESKD with reverse-transcriptase polymerase chain reaction (RT-PCR)-confirmed infection (n = 17) except for 1 individual seroconverted against SARS-CoV-2. Overall seroprevalence (anti-S1 and/or anti-N IgG) was 36% and was higher in patients on hemodialysis (44.2%). A total of 35.6% of individuals who seroconverted were asymptomatic. Seroconversion in the absence of a neutralizing antibody (nAb) titer was observed in 12 patients, all of whom were asymptomatic. Repeat measurements at a median of 93 days from baseline sampling revealed that most individuals retained detectable responses although a significant drop in S1, N and nAb titers was observed. CONCLUSION: Patients with ESKD, including those who develop asymptomatic disease, routinely seroconvert and produce detectable nAb titers against SARS-CoV-2. Although IgG levels wane over time, the neutralizing antibodies remain detectable in most patients, suggesting some level of protection is likely maintained, particularly in those who originally develop stronger responses.

10.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888467

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Assuntos
COVID-19/imunologia , Heme/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Bilirrubina/metabolismo , Biliverdina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Humanos , Soros Imunes , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
11.
Immunity ; 54(6): 1276-1289.e6, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33836142

RESUMO

Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , COVID-19/diagnóstico , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/genética , Humanos , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica/imunologia , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade
12.
bioRxiv ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33791702

RESUMO

The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARSCoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.

13.
Cell Rep ; 34(12): 108890, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33713594

RESUMO

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines show protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, spike. Because new SARS-CoV-2 variants are emerging rapidly, as exemplified by the B.1.1.7, B.1.351, and P.1 lineages, it is critical to understand whether antibody responses induced by infection with the original SARS-CoV-2 virus or current vaccines remain effective. In this study, we evaluate neutralization of a series of mutated spike pseudotypes based on divergence from SARS-CoV and then compare neutralization of the B.1.1.7 spike pseudotype and individual mutations. Spike-specific monoclonal antibody neutralization is reduced dramatically; in contrast, polyclonal antibodies from individuals infected in early 2020 remain active against most mutated spike pseudotypes, but potency is reduced in a minority of samples. This work highlights that changes in SARS-CoV-2 spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their effect on vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/imunologia , COVID-19/metabolismo , Vacinas contra COVID-19/imunologia , Células HEK293 , Humanos , Testes de Neutralização/métodos , Mutação Puntual , Receptores Virais/genética , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Res Sq ; 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33758833

RESUMO

There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). We show that the majority of PLWH, controlled on ART, mount a functional adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleocapsid are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH, in whom disparate antibody and T cell responses are observed. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH.

15.
bioRxiv ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33619489

RESUMO

There is an urgent need to understand the nature of immune responses generated against SARS-CoV-2, to better inform risk-mitigation strategies for people living with HIV (PLWH). Although not all PLWH are considered immunosuppressed, residual cellular immune deficiency and ongoing inflammation could influence COVID-19 disease severity, the evolution and durability of protective memory responses. Here, we performed an integrated analysis, characterizing the nature, breadth and magnitude of SARS-CoV-2-specific immune responses in PLWH, controlled on ART, and HIV negative subjects. Both groups were in the convalescent phase of predominately mild COVID-19 disease. The majority of PLWH mounted SARS-CoV-2 Spike- and Nucleoprotein-specific antibodies with neutralizing activity and SARS-CoV-2-specific T cell responses, as measured by ELISpot, at levels comparable to HIV negative subjects. T cell responses against Spike, Membrane and Nucleocapsid were the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. Notably, the overall magnitude of SARS-CoV-2-specific T cell responses related to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH, in whom disparate antibody and T cell responses were observed. Both humoral and cellular responses to SARS-CoV-2 were detected at 5-7 months post-infection, providing evidence of medium-term durability of responses irrespective of HIV serostatus. Incomplete immune reconstitution on ART and a low CD4:CD8 ratio could, however, hamper the development of immunity to SARS-CoV-2 and serve as a useful tool for risk stratification of PLWH. These findings have implications for the individual management and potential effectiveness of vaccination against SARS-CoV-2 in PLWH.

16.
medRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532784

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that the virus co-opts the haem metabolite for the evasion of humoral immunity via allosteric shielding of a sensitive epitope and demonstrate the remarkable structural plasticity of the NTD.

17.
bioRxiv ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564766

RESUMO

The interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the ACE2 receptor on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, the N-terminal domain (NTD) and S2 subunits of Spike. To fully understand how these mutations affect the antigenicity of Spike, we have isolated and characterized neutralizing antibodies targeting epitopes beyond the already identified RBD epitopes. Using recombinant Spike as a sorting bait, we isolated >100 Spike-reactive monoclonal antibodies from SARS-CoV-2 infected individuals. ≈45% showed neutralizing activity of which ≈20% were NTD-specific. None of the S2-specific antibodies showed neutralizing activity. Competition ELISA revealed that NTD-specific mAbs formed two distinct groups: the first group was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Importantly, mutations present in B.1.1.7 Spike frequently conferred resistance to neutralization by the NTD-specific neutralizing antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes need to be considered when investigating antigenic drift in emerging variants.

18.
J Immunol ; 202(11): 3246-3255, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010851

RESUMO

To evade the immune system, the lethal human pathogen Streptococcus pyogenes produces SpyCEP, an enzyme that cleaves the C-terminal α-helix of CXCL8, resulting in markedly impaired recruitment of neutrophils to sites of invasive infection. The basis for chemokine inactivation by SpyCEP is, however, poorly understood, as the core domain of CXCL8 known to interact with CXCL8 receptors is unaffected by enzymatic cleavage. We examined the in vitro migration of human neutrophils and observed that their ability to efficiently navigate a CXCL8 gradient was compromised following CXCL8 cleavage by SpyCEP. SpyCEP-mediated cleavage of CXCL8 also impaired CXCL8-induced migration of transfectants expressing the human chemokine receptors CXCR1 or CXCR2. Despite possessing an intact N terminus and preserved disulfide bonds, SpyCEP-cleaved CXCL8 had impaired binding to both CXCR1 and CXCR2, pointing to a requirement for the C-terminal α-helix. SpyCEP-cleaved CXCL8 had similarly impaired binding to the glycosaminoglycan heparin. Enzymatic removal of neutrophil glycosaminoglycans was observed to ablate neutrophil navigation of a CXCL8 gradient, whereas navigation of an fMLF gradient remained largely intact. We conclude, therefore, that SpyCEP cleavage of CXCL8 results in chemokine inactivation because of a requirement for glycosaminoglycan binding in productive chemokine:receptor interactions. This may inform strategies to inhibit the activity of SpyCEP, but may also influence future approaches to inhibit unwanted chemokine-induced inflammation.


Assuntos
Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Interleucina-8/metabolismo , Neutrófilos/imunologia , Peptídeo Hidrolases/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Ligação Proteica , Engenharia de Proteínas , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo
19.
Nature ; 568(7751): 244-248, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836379

RESUMO

A cure for HIV-1 remains unattainable as only one case has been reported, a decade ago1,2. The individual-who is known as the 'Berlin patient'-underwent two allogeneic haematopoietic stem-cell transplantation (HSCT) procedures using a donor with a homozygous mutation in the HIV coreceptor CCR5 (CCR5Δ32/Δ32) to treat his acute myeloid leukaemia. Total body irradiation was given with each HSCT. Notably, it is unclear which treatment or patient parameters contributed to this case of long-term HIV remission. Here we show that HIV-1 remission may be possible with a less aggressive and toxic approach. An adult infected with HIV-1 underwent allogeneic HSCT for Hodgkin's lymphoma using cells from a CCR5Δ32/Δ32 donor. He experienced mild gut graft-versus-host disease. Antiretroviral therapy was interrupted 16 months after transplantation. HIV-1 remission has been maintained over a further 18 months. Plasma HIV-1 RNA has been undetectable at less than one copy per millilitre along with undetectable HIV-1 DNA in peripheral CD4 T lymphocytes. Quantitative viral outgrowth assays from peripheral CD4 T lymphocytes show no reactivatable virus using a total of 24 million resting CD4 T cells. CCR5-tropic, but not CXCR4-tropic, viruses were identified in HIV-1 DNA from CD4 T cells of the patient before the transplant. CD4 T cells isolated from peripheral blood after transplantation did not express CCR5 and were susceptible only to CXCR4-tropic virus ex vivo. HIV-1 Gag-specific CD4 and CD8 T cell responses were lost after transplantation, whereas cytomegalovirus-specific responses were detectable. Similarly, HIV-1-specific antibodies and avidities fell to levels comparable to those in the Berlin patient following transplantation. Although at 18 months after the interruption of treatment it is premature to conclude that this patient has been cured, these data suggest that a single allogeneic HSCT with homozygous CCR5Δ32 donor cells may be sufficient to achieve HIV-1 remission with reduced intensity conditioning and no irradiation, and the findings provide further support for the development of HIV-1 remission strategies based on preventing CCR5 expression.


Assuntos
Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1 , Transplante de Células-Tronco Hematopoéticas/métodos , Receptores CCR5/química , Receptores CCR5/genética , Linfócitos T CD4-Positivos/imunologia , Citomegalovirus/química , Citomegalovirus/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/complicações , HIV-1/química , HIV-1/imunologia , Doença de Hodgkin/complicações , Doença de Hodgkin/tratamento farmacológico , Humanos , Receptores CCR5/deficiência , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Transplante Homólogo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
20.
Front Immunol ; 9: 1784, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147686

RESUMO

A diverse B-cell receptor (BCR) repertoire is required to bind a wide range of antigens. BCRs are generated through genetic recombination and can be diversified through somatic hypermutation (SHM) or class-switch recombination (CSR). Patterns of repertoire diversity can vary substantially between different health conditions. We use isotype-resolved BCR sequencing to compare B-cell evolution and class-switch fate in healthy individuals and in patients with chronic lymphocytic leukemia (CLL). We show that the patterns of SHM and CSR in B-cells from healthy individuals are distinct from CLL. We identify distinct properties of clonal expansion that lead to the generation of antibodies of different classes in healthy, malignant, and non-malignant CLL BCR repertoires. We further demonstrate that BCR diversity is affected by relationships between antibody variable and constant regions leading to isotype-specific signatures of variable gene usage. This study provides powerful insights into the mechanisms underlying the evolution of the adaptive immune responses in health and their aberration during disease.


Assuntos
Linfócitos B/metabolismo , Rearranjo Gênico do Linfócito B , Switching de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/genética , Hipermutação Somática de Imunoglobulina , Linfócitos B/imunologia , Linfócitos B/patologia , Humanos , Isotipos de Imunoglobulinas/genética , Região de Junção de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA